
Symbolic Exploration for General Game Playing in PDDL

Stefan Edelkamp and Peter Kissmann
Computer Science Department

University of Dortmund, Germany
{peter.kissmann, stefan.edelkamp}@cs.uni-dortmund.de

Abstract

This paper studies the application and extension of planning
technology for general game playing.
First, we study the transformation of the general game play-
ing language GDL into PDDL with the help of domain con-
stants and derived predicates (level 1 of PDDL2.2) such that
the PDDL input can be instantiated using existing static anal-
ysis tools. We discuss the differences in the conjunctive rep-
resentation of the transition relation (in GDL) and its disjunc-
tive form (in PDDL).
Next, we present symbolic exploration algorithms for one-
and two-player games to fully characterize optimal play. So
far, the algorithms assume alternating moves by the play-
ers, but extend existing classification algorithms for zero-sum
games to the more general cost model imposed in GDL.
We evaluate the approach on a range of PDDL benchmarks
matching the ones in the game playing community and show
current limits and possibilities.

Introduction
In the field of artificial intelligence (AI), two- and multi-
player games have been of some interest, but the best AI
algorithms always had considerable knowledge of the game
they were designed for (Schaeffer 2000).

In general game playing(Love, Hinrichs, & Genesereth
2006), strategies are computed domain-independently with-
out knowing which game is played. In other words, the AI
designer does not know anything about the rules. Best poli-
cies result in perfect play. The opponent(s) attempt to maxi-
mize their individual outcome.

Games can be represented by game trees, which are often
depth-bounded. The values at the leaf nodes of the trees are
computed by a static evaluation function. Retrograde analy-
sis (Schaefferet al. 2005) calculates databases of classified
positions in backward direction, starting from won and lost
ones. These endgame databases can be used in conjunction
with game playing programs to eventuallysolvethe game by
computing the game theoretical status of the initial position.

The purpose of this paper is to close the gap between gen-
eral game playing and domain-independent action planning
by illustrating how close their input languages actually are.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Moreover, we illustrate how state-of-the-art symbolic plan-
ning technology can be applied to general game playing.

The paper is structured as follows. First, we introduce
GDL and PDDL and the mapping between the two. In the
next section, we describe existing and novel symbolic al-
gorithms to solve single- and two-player games. While we
have no restrictions for the single-player games, the two-
player games need to be alternating. We provide results on
a large subset of general game playing domains.

Description Languages
We briefly review the origins of the two formalisms.

GDL The game description language (GDL) (Love, Hin-
richs, & Genesereth 2006) is designed for use in defining
complete information games. It is a subset of first order
logic, using syntax from the knowledge interchange format
(KIF) language1. GDL is a Datalog-inspired language for fi-
nite games with discrete outcomes for each player. Broadly
speaking, every game specification describes the states of
the game, the legal moves, and the conditions that constitute
a victory for the players. This definition of games is similar
to the traditional definition in game theory (Rapoport 1966),
with a couple of exceptions. In this version, a game is a
graph rather than a tree. This makes it possible to describe
games more compactly, and it makes it easier for players
to play games efficiently. Another important distinction be-
tween GDL and classical definitions from game theory is
that states of the game are described succinctly, using log-
ical propositions instead of explicit trees or graphs. Since
2005 there have been annual competitions. The 2005 com-
petition was won by Jim Clune withCluneplayer, the 2006
winners were Stephan Schiffel and Michael Thielscher with
Fluxplayer. While their aim was to win the competition in
match play with tuned algorithms, we concentrate on solv-
ing general games. This might take some time, often even
much longer than the startup- and move-times in a competi-
tion. But to the best of the authors’ knowledge no solver for
general games exists.

PDDL The planning domain definition language (PDDL)
is the standard language for the encoding of planning do-
mains. The original version of the language was developed

1http://logic.stanford.edu/kif/dpans.html

by McDermott (2000). Since then there have been competi-
tions every second year. Fahiem Bacchus (2001) selected
a subset of the original language as the language for the
2000 competition. In PDDL2.1, Long & Fox (2003) then ex-
tended the competition language to allow for numerical vari-
ables and concurrent execution of actions. PDDL2.1 is di-
vided into different levels. Level 1 is propositional planning,
level 2 adds numbers, level 3 adds durational actions. On top
of PDDL2.1, two constructs were added in PDDL2.2 (Hoff-
mann & Edelkamp 2005) including game domain axioms in
form of derived predicates.

Translation and Extension
Since all games in GDL are finite, it is possible, in principle,
to describe games in the form of trees. Unfortunately, such
explicit representations are not practical. Therefore, wepro-
pose a translation from GDL into GDDL (forgame domain
description language) 2 as an extension of PDDL. GDDL
matches the syntax of PDDL2.2, level 1, with the exception
that the evaluation of goals is handled differently. One addi-
tional construct is needed:

(:gain <parameters> <number> <body>)

With number being a bounded integer in{0, . . . , 100},
body being a goal description, andparameters being a
typed list. To allow existing PDDL parsers (likeAdl2Strips
by Hoffmann) to handle the extended input, specialized ac-
tions embed the gain in their name. Currently all games are
translated by hand. In Schiffel & Thielscher (2006) some
aspects of such a translation are considered.

As an example, we consider the well-known two-player
game TicTacToe. Figure 1 illustrates that the translation
of GDL into GDDL of the initial and terminal positions is
one-to-one. Using derived predicates with domain constants
and existential quantification, game domain axioms translate
straight-forwardly from GDL to GDDL (see Figure 2).

The core difference between GDL and GDDL is that the
specification of moves is conjunctive for GDL, while in
GDDL the moves are specified in a disjunctive form. Fig-
ure 3 displays the difference for the TicTacToe game.

Symbolic Exploration
Symbolic planning is based on checking the satisfiability of
formulas (Kautz & Selman 1996). Here, we refer to sym-
bolic exploration only in the context of using Binary Deci-
sion Diagrams (BDDs) (Bryant 1986). These contribute to
many successful AI planning systems (Cimatti, Roveri, &
Traverso 1998; Jensen 2003; Edelkamp & Helmert 2001).
Compared to the space requirements of explicit-state plan-
ners, symbolic planning systems save space by exploiting a
shared representation of state sets. This has a drastic impact
on the design of available algorithms, as not all algorithms
adapt to the exploration of state sets.

Symbolic search executes a functional exploration of the
problem graph. This functional representation of states and
actions then allows to compute the functional representation

2For an overview of GDDL and a selection of models, see
http://ls5-web.cs.uni-dortmund.de/∼edelkamp/pddl-games.

(init (cell 1 1 b))

...

(init (cell 3 3 b))

(init (control xplayer))

(<= terminal (line x))

(<= terminal (line o))

(<= terminal (not open))

(<= (goal xplayer 100)

(line x))

(<= (goal xplayer 50)

(not (line x))

(not (line o))

(not open))

(<= (goal xplayer 0)

(line o))

(:init

(cell r1 c1 b)

...

(cell r3 c3 b)

(control xplayer))

(:goal

(or

(line x) (line o)

(not (open))))

(:gain ?player - role 100

(and

(= ?player xplayer)

(line x)))

(:gain ?player - role 50

(and

(= ?player xplayer)

(not (line x))

(not (line o))

(not (open))))

(:gain ?player - role 0

(and

(= ?player xplayer)

(line o)))

Figure 1: Encoding initial and terminal game positions and
the gains for the xplayer of TicTacToe in GDL (left) and
GDDL (right).

Explicit-State ConceptSymbolic Concept
Search Frontier Functionfront(S)
Expanded States Functionreach(S)
Initial State(s) Functioninit(S)

Goal Functiongoal(S)
Action a Relationta(S, S′)

Action Set Relationt(S, S′)

Table 1: Concepts in explicit-state and symbolic search.

of a set of successors, or theimage, in a specialized oper-
ation. As a byproduct, the functional representation of the
set of predecessors, or thepreimage, can also be efficiently
determined. Table 1 relates the concepts for explicit-state
and symbolic search for variable setsS andS′. Individual
relationsta(S, S′) maintain t(S, S′) =

∨
a ta(S, S′) in a

partitioned form.
Throughout this paper we use two sets of variables,S

andS′, to denote the precondition and effect variables, re-
spectively. During forward search it is necessary to replace
the precondition variables by the effect variables, which is
achieved by the procedurereplace. This way we take some
states that were the effects of a transition and make them the
preconditions for the next step. For backward search this
replacement is the other way around.

The automated inference of a minimized state encoding
of a propositional planning problem in PDDL refers to work
of Edelkamp & Helmert (1999). The automated translation
of planning problems into BDD representations is provided
in Edelkamp & Helmert (2001).

One novelty is the compilation of derived predicates. A
planning instance is compiled into an equivalent description
without derived predicates as follows. On the fully instan-

(<= (row ?m ?x)

(true (cell ?m 1 ?x))

(true (cell ?m 2 ?x))

(true (cell ?m 3 ?x)))

...

(<= (diagonal ?x)

(true (cell 1 1 ?x))

(true (cell 2 2 ?x))

(true (cell 3 3 ?x)))

...

(<= (line ?x)

(row ?m ?x))

...

(<= (line ?x)

(diagonal ?x))

(<= open

(true (cell ?m ?n b)))

(:derived (row ?m - row ?x - tok)

(and (cell ?m c1 ?x)

(cell ?m c2 ?x)

(cell ?m c3 ?x)))

...

(:derived (diagonal ?x - tok)

(and (cell r1 c1 ?x)

(cell r2 c2 ?x)

(cell r3 c3 ?x)))

...

(:derived (line ?x - tok)

(exists (?m - row)

(row ?m ?x)))

...

(:derived (line ?x - tok)

(diagonal ?x))

(:derived (open)

(exists (?m - row ?n - col)

(cell ?m ?n b)))

Figure 2: Encoding game domain axioms of TicTacToe in
GDL (left) and GDDL (right).

(<= (next (cell ?m ?n x))

(does xplayer (mark ?m ?n))

(true (cell ?m ?n b)))

(<= (next (cell ?m ?n ?w))

(true (cell ?m ?n ?w))

(distinct ?w b))

(<= (next (cell ?m ?n b))

(does ?w (mark ?j ?k))

(true (cell ?m ?n b))

(or (distinct ?m ?j)

(distinct ?n ?k)))

(<= (next (control oplayer))

(true (control xplayer)))

(<= (legal ?w (mark ?x ?y))

(true (cell ?x ?y b))

(true (control ?w)))

(:action mark

:parameters

(?player - role

?x - row ?y - col

?t - tok ?nplayer - role)

:precondition

(and

(cell ?x ?y b)

(control ?player)

(= ?player xplayer)

(= ?t x)

(= ?nplayer oplayer)

:effect

(and

(not (cell ?x ?y b))

(cell ?x ?y ?t)

(not (control ?player))

(control ?nplayer)))

Figure 3: Encoding moves of the xplayer of TicTacToe in
GDL (left) and GDDL(right).

tiated level, derived predicates define a partial order, which
can be sorted topologically. This allows to substitute the
derived predicates in preconditions of actions, termination
criteria, or bodies of other derived predicates one after the
other.

Reachability
In general, not all positions that can be expressed in the do-
main language are actually reachable from the initial state.

Essentially, a reachability analysis corresponds to a sym-
bolic breadth-first search traversal that successively takes the
setfront of all positions in the current iteration and applies
the transition relation to find the set of allto positions in the
next iteration.

Starting with the initial state, successor states are gener-
ated until a fixpoint is reached. As in GDL the game ends
once a terminal state is reached, only non-goal states from
from are expanded. The union of all new positions is stored

reach← init;1

front← reach;2

repeat3

to← front∧ replace(¬goal,S′→S);4

to← relProd(t, to,S′);5

to← replace(to,S′→S);6

front← to∧ ¬reach;7

reach← reach∨ front;8

until front = false;9

return reach10

Algorithm 1 : reachable

in the setreach. When no new state is generated, i.e., all
states reachable from the initial state are created, the algo-
rithm terminates. The pseudo-code is shown in Algorithm 1.

The forward calculation of the successors is done by the
function relProd(t, to, S′) = ∃S (t (S, S′) ∧ to (S)). As
the transition relationt is the disjunction of all actionsta,
we can calculate therelProdof each action and calculate the
disjunction of all images afterwards. The search frontier is
updated to the successors without the states that have already
been reached. Thus the successors are determined only once
for each state.

When the search frontier runs empty,reachcontains all
states that are reachable from the initial state.

Classification of Single-Player Games

For single-player games we can partition all reachable states,
i.e., we can determine the maximal gain that the player can
achieve in a specific state. Furthermore, we are able to give
a strategy for each state that leads to the goal that achieves
the calculated gain.

In contrast to reachability analysis, the direction of the
search process isbackwards. Fortunately, backward search
causes no problem, since the representation of all moves has
already been defined as a relation.

The player aims at miximizing the received gain. Thus,
we first calculate all states that lead to a maximal gain of100
by starting at the reachable goal states that achieve a gain of
100 a and calculating all their predecessors. Afterwards we
iteratively calculate the states leading to lesser gains. During
this we remove those states that can also establish higher
gains to determine the maximal possible gain for each state.

The complete procedure is shown in Algorithm 2. First
of all, we determine all reachable states as presented in Al-
gorithm 1. Next we look only at those gains for which a
BDD is present. The BDDgain[i][j] represents the situation
needed for playeri to get gainj. Of all the states described
by the BDD we take only those that are reachable goal states.

Then we calculate the predecessors of the states in the
search frontier and remove those states that are already in
a bucket of higher value. The new states are stored in the
search frontierfront and also added to the set of all reach-
able states leading to the specified gain (gainGoal). Once
the search frontier runs empty, all states for this bucket have
been determined and we can continue with the next.

When all buckets are properly filled, the user might want
to know which gain a given state might lead to in optimal

reach← reachable();1

partition← false;2

for i ← 100 to 0 do3

if gain[1][i] 6= falsethen4

gainGoal← gain[1][i] ∧ reach∧ goal;5

front← gainGoal;6

repeat7

to← replace(from,S→S′);8

to← reach∧ relProd(t, to,S) ∧ ¬partition;9

front← to∧ ¬gainGoal;10

gainGoal← gainGoal∨ front;11

until front = false;12

states[i]← gainGoal;13

partition← partition∨ states[i];14

endif15

endfor16

Algorithm 2 : partitionStatesSinglePlayer

play. To do this, the BDD for the state of interest will be
constructed and, starting at bucket100, the conjunction with
the BDD in each bucket will be determined. If the conjunc-
tion is notfalse, the state will lead to the corresponding gain.

As an example we choose the
well-known single-player gamePeg
(also known asSolitaire), whose ini-
tial state is shown. On the board32
pegs are located at the depicted loca-
tions. The player can move one peg
by jumping over an occupied field
onto an empty one. This jump may
only be performed in horizontal or vertical direction. The
peg then moves to the formerly empty field, leaving the field
it started its jump empty. The peg that was jumped over
is deleted from the board leaving its field empty, too. The
game ends when no more jumps are possible. As with each
jump one peg is removed, this situation arises after31 jumps
at the latest. The main goal is to remove all pegs except for
one. This then should be located in the very middle (i.e., we
aim at the inverse of the initial state). This situation receives
100 points. We also give certain points for other final states:
99 points for one remaining peg that is not in the middle,90,
. . . ,10 points for2, . . . ,10 pegs remaining, respectively, and
0 points for more than10 pegs still on the board.

Classification of Two-Player Games
Two-player games with perfect information are classified it-
eratively. As in the case for the partitioning of single-player
games, we also use backward search.

Even for zero-sum games the partitioning of the states is
involved. Assuming optimal play and starting with all won
positions of one player all previous winning positions have
to be computed. A position is lost if all moves lead to an
intermediate winning position in which the other player can
force a move back to a lost one.

In single-player games we could remove the states also
leading to higher gains from the buckets representing lower
gains. But in two-player games it might not be clear, what
really is higher or lower. For example a state might lead to

reach← reachable();1

foreachplayerdo2

selfLose← reach∧ gain[player][0] ∧ replace(goal,3

S′→S);
from← selfLose;4

opponentWin← selfLose;5

repeat6

to← replace(from,S→S′);7

to← opponentMove∧ relProd(t, to,S) ∧ reach;8

opponentWin← opponentWin∨ to;9

to← replace(opponentWin,S→S′);10

to← selfMove∧ appAll(t, to,S) ∧ reach;11

new← to∧ ¬selfLose;12

from← new;13

selfLose← selfLose∨ new;14

until new = false;15

endfch16

Algorithm 3 : classify (original version)

gain 100 for player1 and0 for player2, but also to0 for
player1 and100 for player2. For each player it is simple
to say which of these buckets means the higher gain, but as
both try to maximize their gain, it is not trivial to determine
to which gains the state really leads.

We present two algorithms that overcome this problem.
Both perform symbolic retrograde analysis for turn-taking
games. These games are identified by the existence of a
predicatecontrol-playerfor each player. The first algorithm
assumes that we have a two-player zero-sum game with pos-
sible gains of100 and0 for each player and maybe some
draw states, giving gain50 for both players. If player1 re-
ceives gain100, player2 has to receive0 and the other way
around. Algorithm 3 shows this algorithm, which was orig-
inally posted in Edelkamp (2002).

First of all, we calculate all the reachable states. Next
we construct four sets: The own lost statesselfLoseand the
states won for the opponentopponentWinfor each player.
The own lost states and the opponent’s winning states are
initialized with the BDDs representing the reachable goal
states in which the player receives a gain of0. Now we con-
struct the predecessors of the lost states. Here the move from
the predecessor states to the current ones has to be made
by the opponent. These predecessors are added to the won
states of the opponent. Starting from those won states we
further build their predecessors. The corresponding move
has to be made by the current player. These new states are
added to the lost states. If there are no new states at this
point, the calculation for the current player ends.

Once the algorithm ends for both players, we can simply
check in which set the initial state resides. If it is in one of
the won states, the corresponding player can assure a vic-
tory; if it is in one of the lost states, the player surely looses.
Otherwise the optimal outcome is a draw.

The simplest way to understand this algorithm is to have
a look at the game-tree. We start the analysis at the leaves
and propagate the gains towards the root. If one nodev of
the opponent has at least one successoru that is won for it,
thenv is also won for it, as it can assure victory by choosing

reach← reachable();1

forbidden← ∅;2

restart← true;3

repeat4

if restart then5

initialize matrix;6

newBDDs← |{(i, j) | matrix[i][j] 6= false}|;7

restart← false;8

step← 0;9

endif10

foreachplayerdo11

matrix← constructPredecessors(matrix, player,12

forbidden, newBDDs, reach);
forbidden← deleteDuplicates(matrix, player,13

forbidden, step);
if duplicateDeletedthen14

restart← true;15

continue ;16

endif17

step← step +1;18

endfch19

until newBDDs =0 ;20

Algorithm 4 : classify (new version)

the appropriate action. If one nodev of the current player
has no successor that is won for it, there is no way it can win
along this path, sov also is lost. The latter is represented by
the expressionappAll(t, to, S) = ∀S′ (t (S, S′) ⇒ to (S′)),
which can be partitioned and traced back torelProd:

appAll(t, to, S) = ∀S
′ (t ⇒ to)

= ¬¬∀S
′ ((t1 ∨ . . . ∨ tn) ⇒ to)

= ¬∃S
′ ((t1 ∨ . . . ∨ tn) ∧ ¬to)

= ¬∃S
′ (t1 ∧ ¬to) ∧ . . . ∧ ¬∃S

′ (tn ∧ ¬to)

= ¬relProd(t1,¬to, S) ∧ . . . ∧ ¬relProd(tn,¬to, S)

Algorithm 4 is a bit more complex. Here we perform only
one search after which we find the classification of the game.
This algorithm is much more general in that it works well for
the general gains, not only zero-sum games. To the best of
our knowledge, no algorithm for general turn-taking two-
player games with general gains has been published before.

We generate a101× 101-matrix of all possible gain com-
binations for the two players. The entry at bucket(i, j) is
initialized as the conjunct of the BDD representing gaini
for player 1 and the one representing gainj for player 2.
We also need the number of BDDs (newBDDs) for which
we still find new predecessors. Once there are no new pre-
decessors in any bucket, the algorithm ends. Initially thisis
the number of BDDs in the matrix that are notfalse. Also
important is the step number, which is initialized to0.

We start by calculating the predecessors in which one
player had control, i.e., it could perform the corresponding
moves. This we repeat, alternating with those in which the
other player had control. After each calculation of predeces-
sors we might get duplicates in some buckets as we calculate
the predecessors of all buckets, which might overlap. An-

for i, j ← 0 to 100 do1

if matrix[i][j] 6= falsethen2

to← replace(matrix[i][j], S→S′);3

foreach item∈ forbidden[i][j] do4

matrix[i][j] ← relProd(t, to,S) ∧ selfMove∧5

reach∧ ¬(item.bdd);
endfch6

if unchangedForTwoSteps(matrix[i][j]) then7

newBDDs← newBDDs -1;8

endif9

endif10

endfor11

Algorithm 5 : constructPredecessors

duplicateDeleted← false;1

total← false;2

for i ← 100 to 0 do3

for j ← 0 to 100 do4

if j 6= 0 then5

total← total∨ matrix[i][j − 1];6

endif7

if (total∧ matrix[i][j]) 6= falsethen8

forbidden[i][j] ← forbidden[i][j] ∪9

{(step, total∧ matrix[i][j])};
duplicateDeleted← true;10

endif11

endfor12

endfor13

if duplicateDeletedthen14

for i, j ← 0 to 100 do15

foreach item∈ forbidden[i][j] do16

if item.step< stepthen17

forbidden[i][j] ← forbidden[i][j] \ item;18

endif19

endfch20

endfor21

endif22

Algorithm 6 : deleteDuplicates

other possibility to create duplicates is that we reach some
state that already is in one bucket along a different path. All
these duplicates will be deleted and we perform a restart.

To maximize the gain for one player, we retain only those
duplicate states that achieve highest gain for it. If then there
are still duplicates, we delete all except for the ones that
achieve the least gain for the opponent. This way we also,
after securing maximal gain for the current player, minimize
the gain for its opponent. Algorithm 6 shows this deletion
of duplicates3.

In order to prevent the newly deleted states from being
created in the corresponding buckets after restart, we need
to store them in a matrix of lists of forbidden statesforbid-
den. One bucket of this matrix contains a list of BDDs rep-
resenting the forbidden states for the corresponding bucket

3Here we show only the situation when the predecessors for the
first player were created. In case of the second player, the indices
of the matrix and the forbidden-matrix will be interchanged.

along with the step of the calculation in which they were for-
bidden. When creating the predecessors of a certain set of
states, we remove those that are in the same bucket within
the forbidden-matrix (Algorithm 5, line 5). The restart is
necessary to delete the predecessors of the now forbidden
states. If we delete states in a certain step, we remove all
those from the list of forbidden states that were generated
with a smaller step (Algorithm 6, from line 14). As we delete
the predecessors of the newly forbidden states, it might be
that these were responsible for the deletion of some states.
So when the now forbidden states and their predecessors
are no longer generated, those deleted states can be created
again.

If there were no duplicates, we increment the step number
and continue, until no new states were generated. To check
this, we have the number of newly created BDDsnewBDDs,
which will be updated each time we are finished with the cal-
culation of the predecessors: If there were no new BDDs in a
certain bucket for two steps,newBDDswill be decremented.
Once the algorithm stops, we simply check in which bucket
the initial state resides. This then represents the gain forboth
players.

Our running example, the
game Clobber4, was invented
by M. H. Albert, J. P. Grossman
and R. Nowakowski in 2001. It
can be played on a board of any
dimension though originally it
was supposed to be played on a
checkers board. The two players, white and black, have
tokens all over the board. Usually these are alternating,
i.e., a white token is always next to a black one. Such
an initial position for Clobber on a3 × 4 board is shown.
Each player, starting with white, can move one of its tokens
only to a horizontally or vertically adjacent field. To do
this, the target field has to be occupied by a token of the
opponent. This then is taken from the board and its position
is occupied by the moved token, leaving its starting field
empty. The game ends once no more moves are possible.
During each move one token is taken from the board, thus
the game ends aftern − 1 steps at the latest, assumingn is
the total number or tokens. The game is won for the player
performing the final move.

To demonstrate the working of the algorithm, we use the
game Clobber on a1× 6 board with alternating colors start-
ing with a white token in the leftmost place. We encode the
states as follows. We have a row of six symbols:b for a
black token,w for a white one and- for an empty field. This
is followed by the player to move,W or B. Thus the initial
state iswbwbwb W . The reachability analysis shows that
there are28 reachable states. Of these,9 are goal states lost
for the white player and2 are goal states lost for the black
player. These are depicted in Table 2.

The columns show the gain for the black player, the rows
that for the white one. As only two buckets are occupied,
we henceforth only depict those buckets:(0, 100), which is
gain0 for the black and gain100 for the white player, and

4http://homepages.gac.edu/∼wolfe/games/clobber

0 100

0 b---w-W

b-ww-bW

-b---wW

--w-b-W

-w-b--W

-ww-bbW

w-bb-wW

ww-bb-W

ww--bbW

100 b--w-w B

w-w--b B

Table 2: Goal states of1 × 6-Clobber.

(0, 100) (100, 0)

b--w-w B

b--wwb W

b-wb-w W

w-bw-b W

w-w--b B

b---w- W

b-ww-b W

-b---w W

--w-b- W

-w-b-- W

-ww-bb W

w-bb-w W

ww-bb- W

ww--bb W

Table 3: Example of1 × 6-Clobber, step1.

(100, 0), in which the gains are the other way around.
First of all we calculate all predecessors with the white

player having control. Only the two states lost for the black
player have such predecessors. These are generated and
added to the matrix, cf. Table 3.

As there are no duplicate states, we continue. Now we cal-
culate the predecessors with the black player having control.
Here new elements are created in both buckets, cf. Table 4.

The stateswbwb-w and wbww-b are in both buckets.
As the last move was done by the black player, we re-
move the duplicates from the(0, 100)-bucket. Now the al-
gorithm starts over, but these states may not be created in the
(0, 100)-bucket until we restart after a higher step. By doing
this, we assure that their predecessors are not created. If we
only remove the duplicate states, their predecessors might
remain in the bucket and cause problems.

After restarting, we create the same states as before with
the exception that in step2, the stateswbwb-w andwbww-b
will not be created in bucket(0, 100). In step3 (cf. Table 5),
the initial statewbwbwb is created in both buckets. As this
was a move by the white player, we remove the duplicate
from bucket(100, 0) and restart. This time, we may not
create the statewbwbwb in bucket(100, 0). The two other
states that were forbidden since the last restart may be gener-
ated again, as it might be possible that the newly forbidden
state prevents the duplicates in bucket(100, 0) from being
created. However, after step2 they are once again removed
from bucket(0, 100) and the algorithm restarts again, this
time forbidding all three states in the corresponding buck-
ets.

During the next iteration, we get to step4, where the state
wb-wwb, which was already present in bucket(0, 100) is
again created in bucket(100, 0), as depicted in Table 6. The
player to make the move is the black one, so we remove the
state from bucket(0, 100) and restart from the beginning;
this time only forbidding the newly deleted state.

In the next iteration, we once again find stateswbwb-w

(0, 100) (100, 0)

b--w-w B

b--wwb W

b-wb-w W

wb-wwb B

wbwb-w B

wbww-b B

w-bw-b W

b---w- W

b-ww-b W

-b---w W

--w-b- W

--w-wb B

-wb--w B

-w-b-- W

-w-wb- B

-wwbwb B

-ww-bb W

wb--w- B

wbwb-w B

wbww-b B

w-bb-w W

ww-bb- W

ww-bwb B

ww--bb W

Table 4: Example of1 × 6-Clobber, step2.

(0, 100) (100, 0)

b--w-w B

b--wwb W

b-wb-w W

wb-wwb B

wbwbwb W

w-bw-b W

w-w--b B

b---w- W

b-ww-b W

-b---w W

--w-b- W

--w-wb B

-wb--w B

-wb-wb W

-w-b-- W

-w-wb- B

-wwbb- W

-wwbwb B

-ww-bb W

wbb--w W

wb--w- B

wb-wb- W

wbwb-w B

wbwbwb W

wbww-b B

w-bb-w W

ww-bb- W

ww-bwb B

ww--bb W

Table 5: Example of1 × 6-Clobber, step3.

and wbww-b to be withdrawn from bucket(0, 100) after
step2. After that, the final iteration starts, during which
none of the stateswbwb-w, wbww-b andwb-wwb may be
created in bucket(0, 100). So after step1, no new states are
found for that bucket, and we no longer consider it during
the calculation of predecessors (if we would restart again,
we once again had to consider that bucket). Hence, the ini-
tial statewbwbwb will not be created in that bucket and thus
not be deleted from the(100, 0)-bucket. In the end, this ini-
tial state is located in the latter one (cf. Table 7), so we are
sure that the game is won for the black player.

Experimental Results
We developed a game based planner in Java implementing
the above algorithms. Experiments were performed on an
AMD Opteron processor with2.3 GHz and4 GB RAM. To
use BDDs we apply JavaBDD5, which provides a native in-
terface to the classical C++ library CUDD6. We transfered
about20 single- and two-player games from GDL to GDDL.

Most single-player games and about half of the two-
player games can be solved using our algorithms. The prob-
lem of the other games is their size: Either they could not be
instantiated (e.g., pancake, connectFour, and nineMenMor-
ris) due to the need for too much memory, or they could not
be transformed to BDDs (e.g., queens and endgame). For
the latter the main problem is the number of derived predi-
cates: When trying to delete them the new domain descrip-
tion becomes too big to fit into main memory. Most of the
games that could be instantiated and transformed to BDDs
are shown in Table 8 along with the results of the reachabil-

5http://javabdd.sourceforge.net
6http://vlsi.colorado.edu/∼fabio/CUDD/

(0, 100) (100, 0)

b--w-w B

b--wwb W

b-wb-w W

wb-wwb B

wbwbwb W

w-bw-b W

w-w--b B

b---w- W

b-ww-b W

-b---w W

--w-b- W

--w-wb B

-wb--w B

-wb-wb W

-w-b-- W

-w-wb- B

-wwbb- W

-wwbwb B

-ww-bb W

wbb--w W

wb--w- B

wb-wb- W

wb-wwb B

wbwb-w B

wbww-b B

w-bb-w W

ww-bb- W

ww-bwb B

ww--bb W

Table 6: Example of1 × 6-Clobber, step4.

(0, 100) (100, 0)

b--w-w B

b--wwb W

b-wb-w W

w-bw-b W

w-w--b B

b---w- W

b-ww-b W

-b---w W

--w-b- W

--w-wb B

-wb--w B

-wb-wb W

-w-b-- W

-w-wb- B

-wwbb- W

-wwbwb B

-ww-bb W

wbb--w W

wb--w- B

wb-wb- W

wb-wwb B

wbwb-w B

wbwbwb W

wbww-b B

w-bb-w W

ww-bb- W

ww-bwb B

ww--bb W

Table 7: Example of1 × 6-Clobber, final situation.

ity analysis.
Peg is the most complex one of all the transfered games:

A total of more than375 million states is reachable, while
3.5 million nodes suffice to represent them all. The acquired
results of Algorithm 2 are shown in Table 9. The reachability
analysis took about30 minutes, while the total running time
was more than7.5 hours.

Most of the two-player zero-sum games that can be solved
by the old classification algorithm can also be solved by the
new one. But this has a worse runtime, which can be seen
even with small games. The classical Tic-Tac-Toe game
takes less than a second to be fully classified by the old al-
gorithm. The new one takes nearly 12 seconds. A similar
situation arises with the game Nim. In our implementation
of this we have only one row of the specified number of
matches and each player may take one up to three matches
at its turn. For the situation of40 matches, the blowup be-
comes apparent: While the old algorithm takes only four
seconds to classify it, the new one takes1 hour,20 minutes.

Of all the two-player games that could be instantiated and
transformed to BDDs, Clobber is the most interesting one,
as with the bigger instances its state space becomes huge.
Here the effect of BDDs can be seen again. In the case of
the 4 × 5 board, a total of more than26.5 million states
are reachable, but less than half a million nodes suffice to
represent them all. The classification takes nearly nine hours
with the original algorithm, while the new one did not finish
after20 days.

The new algorithm can handle the general gains provided
with the GDL. So we can not only determine who will win

Game n s

8-Puz. 155,722 6,980,353

15-Puz. 2,055,704 9,251,016

blocks 110 42

hanoi 932 5, 504

peg 3,501,604 375,110,246

Game n s

clobber3x4 4,878 13,343

clobber4x5 471,456 26,787,440

minichess 3,151 4,573

nim40 18 80

tictactoe 625 5,478

Table 8: Single- and two-player games (n ands represent the
number of BDD nodes and the number of reachable states,
respectively).

Pegs remaining Gain n s

1 (in the middle) 100 1,835,093 26,856,243

1 (somewhere else) 99 70 4

2 90 7,321,698 134,095,586

3 80 7,022,261 79,376,060

4 70 6,803,498 83,951,479

5 60 3,589,371 25,734,167

6 50 2,309,661 14,453,178

7 40 1,266,697 6,315,974

8 30 651,352 2,578,583

9 20 338,281 1,111,851

10 10 166,229 431,138

> 10 0 94,094 205,983

Table 9: Partitioning of peg (n is the number of nodes,s the
number of states in the corresponding bucket).

a game, but also what gain can be achieved. For the3 × 4
instance of Clobber we give gains according to Table 10.
The zero-sum classification takes about13 seconds with the
old algorithm and nearly3 minutes,20 seconds with the new
one. The classification with the depicted gains runs even
longer than an hour. In the end, the initial state resides in the
bucket(0, 40), which means that the final situation is both
players having two tokens left on the board, something the
old algorithm could not tell.

Conclusion
With the game domain description language, game playing
has eventually approached classical AI planning. The paper
has shown how to bridge the gap of general game playing
and domain-independent action planning by illustrating how
close their respective input languages GDL and PDDL ac-
tually are. Moreover, set-based exploration algorithms have
been presented to solve general games with limited memory.
As the presented approach for solving two-player games
with costs is general, it might be extended to solve games
with more than two players. To adapt the algorithm one has
to increase the dimension of the cost (and forbidden) matrix
and extend the loop to the number of players.

References
Bacchus, F. 2001. The AIPS’00 planning competition.AI Maga-
zine22(3):47–56.

Bryant, R. E. 1986. Graph-based algorithms for boolean function
manipulation.IEEE Transactions on Computers35(8):677–691.

Cimatti, A.; Roveri, M.; and Traverso, P. 1998. Automatic
OBDD-based generation of universal plans in non-deterministic
domains. InFifteenth National Conference on Artificial Intelli-

number of tokens (white:black)gain white gain black n s

4 : 4 0 70 330 38

4 : 3 70 0 305 49

3 : 3 0 55 3,268 1,544

3 : 2 55 0 3,205 1,509

2 : 2 0 40 7,090 6,581

2 : 1 40 0 3,955 1,853

1 : 1 0 25 3,733 1,769

Table 10: Gains for each player at3 × 4-Clobber and the
number of nodes and states in each bucket after classifica-
tion.

gence and Tenth Innovative Applications of Artificial Intelligence
Conference (AAAI ’98 / IAAI ’98), 875–881. AAAI Press.

Edelkamp, S., and Helmert, M. 1999. Exhibiting knowledge in
planning problems to minimize state encoding length. In Fox, M.,
and Biundo, S., eds.,Recent Advances in AI Planning. Fifth Euro-
pean Conference on Planning (ECP ’99), volume 1809 ofLecture
Notes in Artificial Intelligence, 135–147. Springer-Verlag.

Edelkamp, S., and Helmert, M. 2001. The model checking inte-
grated planning system (MIPS).AI Magazine22(3):67–71.

Edelkamp, S. 2002. Symbolic exploration in two-player games:
Preliminary results. InInternational Conference on AI Planning
& Scheduling (AIPS ’02), Workshop on Model Checking, 40–48.

Hoffmann, J., and Edelkamp, S. 2005. The deterministic part of
IPC-4: An overview.Journal of Artificial Intelligence Research
(JAIR)24:519–579.

Jensen, R. M. 2003.Efficient BDD-Based Planning for Non-
Deterministic, Fault-Tolerant, and Adversarial Domains. Ph.D.
Dissertation, Carnegie Mellon University.

Kautz, H. A., and Selman, B. 1996. Pushing the envelope: Plan-
ning, propositional logic and stochastic search. InThirteenth Na-
tional Conference on Artificial Intelligence and Eighth Innova-
tive Applications of Artificial Intelligence Conference (AAAI ’96
/ IAAI ’96), 1194–1201. Menlo Park: AAAI Press / MIT Press.

Long, D., and Fox, M. 2003. The 3rd international planning com-
petition: Results and analysis.Journal of Artificial Intelligence
Research (JAIR)20:1–59.

Love, N. C.; Hinrichs, T. L.; and Genesereth, M. R. 2006. General
game playing: Game description language specification. Techni-
cal Report LG-2006-01, Stanford Logic Group.

McDermott, D. V. 2000. The 1998 AI planning systems compe-
tition. AI Magazine21(2):35–55.

Rapoport, A. 1966.Two-Person Game Theory. University of
Michigan Press.

Schaeffer, J.; Bj̈ornsson, Y.; Burch, N.; Kishimoto, A.; M̈uller,
M.; Lake, R.; Lu, P.; and Sutphen, S. 2005. Solving checkers. In
Kaelbling, L. P., and Saffiotti, A., eds.,Nineteenth International
Joint Conference on Artificial Intelligence (IJCAI ’05), 292–297.
Professional Book Center.

Schaeffer, J. 2000. The games computers (and people) play.
In Seventeenth National Conference on Artificial Intelligence and
Twelfth Innovative Applications of Artificial Intelligence Confer-
ence (AAAI ’00 / IAAI ’00), 1179. AAAI Press / MIT Press.

Schiffel, S., and Thielscher, M. 2006. Reconciling situation cal-
culus and fluent calculus. InTwenty-First National Conference
on Artificial Intelligence and Eighteenth Innovative Applications
of Artificial Intelligence Conference (AAAI ’06 / IAAI ’06). AAAI
Press.

